25 research outputs found

    Analysis of Theoretical and Applied Machine Learning Models for Network Intrusion Detection

    Get PDF
    Network Intrusion Detection System (IDS) devices play a crucial role in the realm of network security. These systems generate alerts for security analysts by performing signature-based and anomaly-based detection on malicious network traffic. However, there are several challenges when configuring and fine-tuning these IDS devices for high accuracy and precision. Machine learning utilizes a variety of algorithms and unique dataset input to generate models for effective classification. These machine learning techniques can be applied to IDS devices to classify and filter anomalous network traffic. This combination of machine learning and network security provides improved automated network defense by developing highly-optimized IDS models that utilize unique algorithms for enhanced intrusion detection. Machine learning models can be trained using a combination of machine learning algorithms, network intrusion datasets, and optimization techniques. This study sought to identify which variation of these parameters yielded the best-performing network intrusion detection models, measured by their accuracy, precision, recall, and F1 score metrics. Additionally, this research aimed to validate theoretical models’ metrics by applying them in a real-world environment to see if they perform as expected. This research utilized a quantitative experimental study design to organize a two-phase approach to train and test a series of machine learning models for network intrusion detection by utilizing Python scripting, the scikit-learn library, and Zeek IDS software. The first phase involved optimizing and training 105 machine learning models by testing a combination of seven machine learning algorithms, five network intrusion datasets, and three optimization methods. These 105 models were then fed into the second phase, where the models were applied in a machine learning IDS pipeline to observe how the models performed in an implemented environment. The results of this study identify which algorithms, datasets, and optimization methods generate the best-performing models for network intrusion detection. This research also showcases the need to utilize various algorithms and datasets since no individual algorithm or dataset consistently achieved high metric scores independent of other training variables. Additionally, this research also indicates that optimization during model development is highly recommended; however, there may not be a need to test for multiple optimization methods since they did not typically impact the yielded models’ overall categorization of v success or failure. Lastly, this study’s results strongly indicate that theoretical machine learning models will most likely perform significantly worse when applied in an implemented IDS ML pipeline environment. This study can be utilized by other industry professionals and research academics in the fields of information security and machine learning to generate better highly-optimized models for their work environments or experimental research

    New specimens of the basal ornithischian dinosaur Lesothosaurus diagnosticus Galton, 1978 from the Early Jurassic of South Africa

    Get PDF
    We describe new specimens of the basal ornithischian dinosaur Lesothosaurus diagnosticus Galton, 1978 collected from a bone bed in the Fouriesburg district of the Free State, South Africa. The material was collected from the upper Elliot Formation (Early Jurassic) and represents the remains of at least three different individuals. These individuals are larger in body size than those already known in museum collections and offer additional information on cranial ontogeny in the taxon. Moreover, they are similar in size to the sympatric taxon Stormbergia dangershoeki. The discovery of three individuals at this locality might imply group-living behaviour in this early ornithischian

    Catching Element Formation In The Act

    Full text link
    Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.Comment: 14 pages including 3 figure
    corecore